
U. S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 2001

Multivariate Analysis of Temperatures and
Winds Using Optimum Interpolation

Kenneth H. Bergman
Development Division

MAY 1979

This is an unreviewed manuscript, primarily
..intended for informal exchange of information
among NMC staff members.

Also submitted for publication in Monthly Weather Review.



ABSTRACT

The design of a statistical "optimum interpolation'"

analysis system for multivariate analysis of temperature

and wind fields is-described. The scheme uses three-

dimensional correlation functions, defined as products

of quasi-horizontal and vertical correlations. A

numerical prediction is used to provide background

fields, and corrections to them are obtained using

optimum interpolation. Observations are assigned rms

error levels, and for some observational types the

errors are assumed to be vertically or laterally cor-

related. A procedure for using oceanic surface data in

the upper-air analysis is included.

Some special design features, including data selection

and error-checking procedures, are discussed. The

mechanics of the analysis system are illustrated with a

step-by-step example analysis. Several experimental

analyses are compared in order to illustrate sensitivity

of the analysis scheme to changes in design features and

governing parameters.



1, Introduction

In an era when the meteorological observing network is composed of

a number of different observing systems, each with its own

quality characteristics, it is desirable to use a method of data

analysis which accounts for these differences in a logical and syste-

matic manner. An analysis method which accomplishes this goal and has

other desirable properties is that of optimum interpolation.

First developed comprehensively by L. S. Gandin (1963), optimum

interpolation is an analysis scheme which estimates the value of a

meteorological field at any desired set of locations from a "guess"

value at each location and the observations in the vicinity of each

location. Normally, the set of locations comprises a regular grid net-

work, and the guess values are provided by a forecast, climatology, or

a blend of the two. When a forecast is used to provide the guess field,

the optimum interpolation analysis is said to "update" the forecast

field in those regions where current synoptic data are available.

The analysis scheme presented here is designed to update values of

temperature and horizontal wind components at the grid points of a nine-

iaetiglobal prediction model (Stackpole et al., 1974) currently in

operational use at the National Meteorological Center (NMC), It is

multivariate; wind observations are used in the interpolative analysis
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of the temperature field and vice versa. Geostrophy, in the form of the

thermal wind relationship (as suggested by Eddy, 1973), is used to

determine the impact of one type of data on the other type of field.

Thus, a degree of mass-momentum balancing is provided by the analysis

that would not be present if the temperature and wind fields were

analyzed separately.

The theoretical basis for the multivariate analysis of meteorological

fields by optimum interpolation is outlined by Gandin (1963), and

Gandin and Kagan (1974). Multivariate analysis of geopotential height

was performed for a single grid point by Kluge (1970), who concluded

that the inclusion of wind information improved the accuracy of the

height analysis. tWorking versions of multivariate analysis of

heights and winds on isobaric surfaces have been developed by

Rutherford (1973, 1976), Schlatter (1975), and Schlatter et al. (1976).

Many of the design features of these two optimum interpolation schemes

have been incorporated in the present system. An earlier version of

the analysis system is summarized by Bergman (1976).

2. Formulation of analysis equations

Consider a regular grid of points in three dimensions (A, l, p)

where current values of meteorological fields are desired. Assume that

guess" values of the fields are known at each grid point. These guess

values might be provided by a numerical forecast (Kruger, 1969), by

climatological normals (Gandin, 1963), or by a suitable blend of the two.
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Assume that there is an irregular distribution of observations of the

meteorological variables, for example temperature and the two wind

components, for which values are desired at the grid points. These

observations may be taken by a heterogeneous collection of observing

systems, such as rawinsonde, satellite, aircraft, etc. The horizontal

location and pressure-altitude of each observation are assumed known.

Using bilinear interpolation in latitude-longitude and linear in

Zn(p) in the vertical, the values of the guess fields at each obser-

vation location may be determined, and the difference between each

observed value and corresponding guess value may be computed~ thus,

fik = Fik - Fik ' (21

where fik is this difference (or residual) for the ith observation of

E^ 

the kth variable, Fik is the observed value, and Fik is the corres-

ponding guess value of the kth variable at the same location. When

more than one variable is measured by an instrument at a particular

location, each measurement counts as a separate observation.

Each observation is to some extent erroneous. Thus,

Fik = Fik + eik, (2.2)

where Fik is the "true" value of the kth variable at the location of

the ith observation and eik is the observational error. Similarly,

fik fik + eik '
where

f E~ik -F. (2.4)fik E Fik - Fik

is the difference between the true value of the kth variable and the

first guess at the ith location.
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The true value Fgr of the rth variable at a representative grid

point may be estimated by nk
~ m nk

Fgr Fgr + i X aikfik, (2.5)
gr gr k= L=l1

where Fgr is the guess value of Fgr at the grid point, m is the number

of variables entering into the multivariate analysis of variable r at

grid point g, nk is the number of observations of variable k used in

the analysis, and aik is the weight which the ith observation of type

k receives in forming the estimate of Fgr.

In general, the right-handside of (2.5) will not give the true

value Fgr of variable r at the grid point but will differ by an amount

called the analysis error. Statistical optimum interpolation requires

that the mean square analysis error E2r of (2.5),

m nk
Egr = [Fgr - Fgr - kl ill aik(fik+ eik)]2 (2.6)

be a minimum, where the bar denotes an ensemble average over a large

number of grid point analysis situations. This requirement results in

the following set of equations:

m n_
~ (f f + f-e. + e f +e e). =f f ~ f ,(2.7)

Q-Z1 j ikfj+ kj ikkeg+ eeifg+ eikegaJ = fr+ eikfgr (2.7)
k = 1,2,...,m; i = 1,2,...,n k.

If the weights ajX satisfy these equations, then Egr can be re-expressed

in the form (Gandin and Kagan, 1974)
m 4k

E?2 =f2 -a .ff + ef )2.8
gr gr k- i-1 ik(ikfgr ikfgr (2.8)

In (2.7) and (2.8), fgr is the difference between Fgr and Fgr; see (2.4).
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The set of equations (2.7) can be solved for the observational

weights aik provided the statistical covariances fikfjz, fikej, etc.,

are known or can be estimated. Then the statistically optimum value

of Fgr is given by (2.5) using these weights, and the correspondinggr

estimate of analysis error for Fgr is provided by (2,8).

It is convenient to re-express equations (2.7) and (2.8) in

normalized form. Dividing each equation of (2.7) by (i--2g)2 yields
kik grk

m n.
k~ +1 rk~..ca ik T.. 6 + k ~i jE F c )a. = 0k + T .ek

=1 jX1 9i iji + iik jJ ikig gi ik (2.9)

k = 1,2,...,m; i = 1,2,...,nk;

where

k~
Pij E

T. . =
13

kk =
ij

n k _

¢ik -

(f ikfi j ) / ( kf j PI) k2 

(fikjf)/(f 2f 2),

(f* e )/fe -P.
ikj9. ik j 

- ) / if~2 3

ikj2 ikj~~~~~~1
(e1k/fik),

(2.10a)

(2.10b)

(2.10c)

(2.o10d)

and

a E (f 2j/f 2)1a. (2. 0e)
2 grive

Division of (2.8) by f 2 gives

m nk
E 2/-(f 2) = 1 - Xk I a- (pkr + Trk ) (2.11)
gr gr k= i=l ik ig gi ik

In order for (2.11) to give a meaningful result, the double sum must

be positive. This will be true provided the system of equations (2.9)
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has coefficients which define a positive-definite matrix. Then it can

be seen from either (2.8) or (2.11) that the estimate of analysis error,

Egr, is less than the root-mean-square error (f[ ) of the guess value

by an amount which depends on the weights aik which the observations

used in the analysis received. In the event that no observations are

made in the vicinity of the grid point, the "analysis" error is just

the error of the guess value.

Three kinds of correlation coefficient appear in the equations

(2.9) for determining the observational weights. One of these,P.., is

the correlation of the error fik in the guess value at one location

with the corresponding error fg at another location. The specification

of this correlation is discussed in the following section. Another

correlation, kij2 is that of the observational error at one locationiJ,
with the observational error at another location. This correlation is

discussed in Section 4.

The third correlation which appears in (2.9), Tkij, is that of the

eor in the guess value at one location with the error in the observation

at another location. Since conventional observations are usually made with
k2.

no knowledge of the forecast or other guess value, Ti.. is usually zero for

them. Exceptionally, an error in the observing equipment (such as a bad

baseline check for a rawinsonde) may be present for several consecutive

observing periods and, since a forecast used as a guess depends on
k9.

previously observed data, may lead to nonzero T... Certain types of remote
1j

sensors, in particular satellite radiometers, tend to produce "observations"

which define smoother fields, with less amplitude, than exist in reality

(Desmarais, et al., 1978). Forecast fields are similarly smoother than the

true fields, thus the errors of these two quantities may well be spatially
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correlated. The magnitude of this correlation, if any, has not been

determined. We follow Gandin and Kagan (1974) and assume that the

kkcorrelations T.j are negligible, although we may not always be justi-
1J

fied in doing so. With this simplification, (279) ad(2_11 become

m n
M1 j k1 kki k~

Z (k-1% + nij ik'j igkr

k = 1,2,...,m; i = 1,2 ,...,nk; (2.12)

and
m nk

2/ FF72 ji~j a~ kr (.3
gr /gr) =1 li aikPig (2.13)

3. Determination of error correlations of theues orackrond, field

As stated previously, the NMC global analysis program analyzes

temperature and the two horizontal wind components multivariately.

Hence both auto-correlations of these variables and cross-correlations

between them must be specified. We choose to impose a geostrophic con-

straint, in the form of the thermal wind equation, between errors of

the temperature and wind component guess fields. A more realistic

constraint could be imposed, but the geostrophic constraint has the

virtues of simplicity of formulation and of proven satisfactoriness

in multivariate optimum interpolation analysis (Rutherford, 1976;

Schlatter, et al., 1976).

Let t, u, v represent the corrections to be made to the background

fields of temperature and the horizontal wind components respectively. In

other words, let ti, ui, and vi be the fik of (2.4) and following equations.
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They are assumed to be interrelated as follows, in Cartesian coordinates:

-ap fi a)i(3.1)
= fi fY i1

(3.2)
a i fiPi 3x

Here G is a "coefficient of geostrophy' a§ s defined by (3.20),

-R is the specific gas constant for air, f is the Coriolis

parameter, x and y are horizontal location coordinates described in the

next paragraph, and p the pressure altitude of the point i.

The horizontal coordinates xi and yi of an observation or grid

point are defined in terms of its latitude 1iand longitude-i aa follows:

xi = A mi cos~i cosXi, (3.3)

Yi = A mi cosfi sinXi, (3,4)

where A is the radius of the earth, and in the Northern Hemisphere,

2

i 1 + sin4i

is the map factor, true at the North Pole, for a polar stereographic

projection. In the Southern Hemisphere, the map factor is defined by

2

mi =1 + sin(-hi) 

In each hemisphere, the approximate true earth distance is then

given by

Asi = 2 [(xi - xj)2 + (Yi - yj )2 ] (3.5)J mi+ mj [ (3J5
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If points i and j lie on opposite sides of the equator, either the

Northern or Southern Hemisphere definitions of mi and mj and corresponding

definitions of xi, Yi, xj, yj, are used but not both. Definitions of

ui, vi, uj, vj correspond in orientation with positive xi, Yi, xj, yj.

Although the analysis is actually performed at latitude/longitude grid

points in order to provide initial conditions for the NMC global model, it

is convenient to work with distances, directions, and velocity components

in cartesian coordinates on a polar stereographic grid because the

correlation functions given below and in the appendices then assume their

simplest form.

If (3.1) and (3.2) apply, then it may be shown that the covariances*

between two points, i and j, of the variables t, u, and v are as a con-

sequence related as follows:

a nPi (Uitj)

9 kn pia -
a in pj v j)

a n Pivitj)

a pj (tivj)

a2

a Zin pi n pjuiuj)

a tn Pi an pj

D n Pi D kn p j

a2

a Zn Pi a Zn pj Vivj )

GiR a tt)

G.R __

3 3

fi Dxi

OiGz R2 - a2 _

= fifj ayiayj (titj)

G iGE2 a2

GiGjR 2 a3 2

= - f--f ayax. (tit~)
1Gi_3i2 32

= fifj axiYj t

*Strictly speaking, Cov(a,b) = ab b, :,thusc the barred quantities in

(3.6) through (3.13) are covariances only if ui = 0, tj = 0, etc. This

is likely to be approximately true for a large statistical sample, but

the analysis scheme does not require that such be exactly the case.

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



10

We next assume that the three-dimensional covariances titj, uitj, etc.,

may be repDresented by analytical functions of the snatial coordinates;

moreover that they may be expressed as the Droduct of a auasi-horizontal

function (-t constant pressure) and a vertical function, i.e.

tt tt
ti tj = ijx(xi'Yi; xjlyj)xi j (pi ,pj ) (3.14)

ut. = 4t(xiY i.; xj,yj)Xij(p i pi ) (3.15)

and similarly for the other three-dimensional covariances. This assumption

may be criticized on the grounds that it tends to make the analyzed fields

of corrections more barotropic than would be the case if fully three-

dimensional covariances were used. However, the direction and magnitude

of the slope of baroclinic systems (and presumably also corrections to

baroclinic forecasts) show a large variation in the atmosphere; any co-

variance function which was based on the "average slope" of systems would

give misleading results in a large number of cases. Additionally, the

factoring of the covariance functions into horizontal and vertical

functions greatly simplifies their use in the analysis scheme.

If (3.14), (3.15), etc., are assumed, it is then possible to show that

tt
all of the other 4-functions can be expressed in terms of ij and that all

uu
of the other X-functions can be expressed in terms of Xij,. These functions
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may also be normalized to give the equivalent of correlation functions:

ttii. t etc., corresponding to ip ut, etc., and vj tt vj, etc.,Iiij~~~~~~~~~~, vij, vj~ ij, etc.
corresponding to X~t, X., etc. The mathematical details are given in

ij i

Appendix A. Thus, if t and viJ are specified as differentiable functions

of xi, Yi, xj, yj (or alternatively Xi, is A., .j) and Pi, pj respectively,

then all of the other B- and v-correlations are automatically specified

if the thermal wind relations (3.1) and (3.2) are valid. The total

correlations are then given by

tt tt tt
ij= ij i.'

Pij =ij ij' (3.17)=~ ~ii' vjjt (3.17)

etc., and their use in (2.12) permits the deviations of the observed winds

from their guess, or background, values to influence the temperature

analysis to some extent, and vice versa.

There is a considerable literature on the form of the constant pressure

correlation function for geopotential height residuals.- A normaldistri-

bution form is used by Rutherford (1973, 1976) and Schlatter (1975) in

their multivariate analysis schemes. Alternative forms are suggested by

Thiebaux (1975, 1976) and by Julian and Thiebaux (1975). We have followed

Rutherford and Schlatter and used

tt (3.18
ij = exp[- kh(Asij) 2] (3.18)

where kh is a constant with dimensions [9-2], and Asij is given by

(3.5), for the isobaric correlation function of temperature residuals, which is

thus assumed to be isotropic and the same as that for geopotential height.

The latter assumption is supported by (27B) of Appendix B. Some pre-

liminary statistical evidence (Bergman and Gordon, 1977) on the isobaric



12

component of the temperature auto-correlation indicates that (3.18) with

kh = .98 x 10-6 km- 2 models it reasonably well. Isopleths of this

correlation and of the other i-correlations derived, in Appendix A, from

(3.18) are shown for 45°N latitude in Fig. 1. These patterns are

essentially the same as the geopotential height and the

wind correlations of Rutherford (1973, 1976) and Schlatter (1975). They

are also supported approximately by the forecast-error correlation

statistics which have been accumulated thus far at NMC.

The form currently assumed for the vertical auto-correlation of the

u wind component is

vuu 1 (3.19)

13 1 + kpn 2 (pi/ pj )

where k = 5.0. This form was obtained from preliminary vertical auto-
P

correlation statistics for the wind components which, except for the

1000 mb correlations with other levels, showed approximate independence

of the statistical correlation profile with respect to the specific

pressure level Pi. Later statistics (Bergman and Gordon, 1977) indicate

that a larger value of kp may be appropriate, but the value used in the

analysis scheme was not changed for the experimental runs discussed here. The

v.. auto-correlation is assumed equal to the v auto-correlation in the

analysis scheme, and this assumption is well justified by the available

correlation statistics, The v-correlation functions are derived in

Appendix A and shown in Fig. 2.
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As shown by (36A) through (40A) of Appendix A, with the given

choice of correlations (3.18) and (3.19), the mean square error of the

guess temperature field, t2, is a constant, and the corresponding wind

component errors, u~ and v~, are equal and a function of latitude only.
1.

Essentially, this is a result of assuming that (22A) and (23A), the co-

variance counterparts of (3.18) and (3.19), are both homogeneous functions,

independent of specific x,y,.p location in the atmosphere and. dependent

only upon the difference between the two points involved.

Actually, the mean square errors of the numerical predictions used

for the guess fields vary both laterally and with pressure. Statistics

compiled by Dey and Caporaso (1979) show that the rms temperature error

varies laterally by a factor of approximately 2, and the rms vector wind

error by approximately 3, between the Northern Hemispehre continents and

the Southern Hemisphere oceans. Values of forecast error standard

deviation are shown in Table 1 as a function of pressure.. Both the former

and the latter values were obtained by comparing 6-hr forecasts' produced.

by the global model with rawinsonde observations.

In practice, the analysis scheme assumes "local homogeneity," both

laterally and vertically, of the correlation functions and the implied'

variances for all forecast errors in the vicinity of the grid/point andvariance for Al for t0,.7-0an. 

pressure level being analyzed. Since the maximum lateral distance between

an observation used for the analysis at a grid point and the grid point

0
itself is 15. latitude, the assumption of lateral homogeneity is probably

not a serious problem. Similar lateral homogeneity assumptions are made
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by Schlatter (1975) and Rutherford (1976) in their analysis schemes.

The assumption of vertical homogeneity may seem more questionable in

view of the variability of the forecast errors shown in Table 1, but

in practice data displaced more than 2 mandatory levels away from the

analysis level are rarely used in analysis because the correlations at

greater separations are so small (Fig. 2). The equating of u. and v.
1 1

is supported by Table 1.

It is possible to define factored covariance and correlation

functions which imply spatially variable variances, at least in the

vertical, but such functions have not been tried in the NMC analysis

scheme.$~~~~~ 

0
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measurements and, in general, the errors of observations from differing

observing systems are uncorrelated. Also, the errors of measuring two

different meteorological variables, even if measured by the same instru-

ment, are unlikely to be correlated. An example is temperature and the

u-component of wind, both measured by the same rawinsonde. (Errors of

the u- and v-components of wind are uncorrelated provided the measured

errors of speed and direction are uncorrelated.)

The situation is different for a time sequence of observations taken

by the same instrument! An error in an observation at one time is likely

to be related to the error at a proximate time. The available evidence

on observational errors bears this out. Rawinsonde observations at two

adjacent pressure levels using the same instrument are found to have

correlated errors (Hollett, 1975) for both temperature and wind components.

The temperature observations obtained from satellite radiance measurements

have errors which are correlated horizontally along a satellite orbital path

(Bergman, 1978; Schlatter and Branstator, 1978). Because of the way the

vertical temperature profiles are constructed from the radiance

measurements, it is likely that these temperature errors are correlated

vertically too, although the evidence is conflicting (Bergman, 1978).

For other observing systems in use at the present time, observations are

not likely to have significantly correlated errors, and we have so assumed

in the analysis scheme \iuntil evidence to the contrary is availalee. .
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In the analysis scheme described here, the vertical error correlations

of rawinsonde temperatures and winds, and of satellite temperatures, are

modeled with the functions shown in Fig. 4. The rawinsonde values were

obtained by fitting curves of the form of (3.19) to Hollett's values of

error correlation between mandatory pressure levels, and .the $sateljite

values from comparison with an analysis by C. Hayden (unpublished manuscript),

The horizontal correlation of satellite temperature errors is modeled with

a function of the form (3.18) except that kh = 11.3 x 10 7b6 km-. This

value was obtained by fitting a curve to the Nimbus error correlation

statistics obtained by P. Polger and J. Horodeck of NMC as shown in Fig. 5.

Similar horizontal error correlation statistics have been obtained by

Schlatter and Branstator (1978).

5. Determination of observational errors

Finally, the normalized observational error standard deviations (the

's of (2o12) must be specified for each type of observation and instrument.

The values given in Table 2 were used for the experimental analyses dis-

cussed in this paper. These values are assumed to be independent of

spatial and temporal location, although it is recognized that this is an

oversimplification. A more realistic treatment of observational errors

appears in the companion paper (McPherson et al., 1979), wherein the

errors of the forecast field used as a "first guess" are allowed to evolve

in space and time through cycling of the analysis-forecast routine on itself.

S
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Note that the error characteristics of many of the observing

systems, old as well as new, are known only very approximately at best.

Studies are in progress at NMC (Bergman, 1978) and elsewhere to improve

the estimates of some of these observational errors.

6. Use of Surface observations in upper air analysis

Surface observations are incorporated in the upper air analysis in

the following way. Surface pressure residuals (differenced between observed

surface pressure and guess surface pressure) are converted to equivalent

geopotential height residuals by the following approximate relation:

Z RT Po (6.1)

where Ml' is the equivalent height residual at pressure level P 1, T is

the mean temperature of the layer between the surface pressure Po and

level PI, pO is the observed surface pressure residual, and Po0 is the

guess value of surface pressure at the observing site. Thus far, we have

used only ship surface pressure observations for which we can set T = Top

the surface temperature. Otherwise, it is necessary to make an assumption

about the thermal lapse rate between the surface and level PI

Assuming that the geostrophic and thermal wind relations hold between

the residuals of geopotential height and the temperature and wind component

residuals, it is shown in Appendix B that all of the new correlations

between height and the other residuals are expressible in terms of the

multivariate (t,u,v) correlations already derived in Appendix A. Thus,



13

The thermal wind balancing implied by (3.1) and (3.2) is obviously

not applicable in the immediate vicinity of the equator. Thus, it is

necessary to gradually decouple the temperature and wind analyses as the

equator is approached. This is accomplished by means of the coefficient

of geostrophy G, a function of latitude.

In order to estimate the profile of this function, a brief study of

the geostrophicity of the wind in the tropics was conducted. A month's

worth of data for stations between 5°N aid 35°N latitude was sorted into

three latitude bands (50N-15°N, 15°N-25°N, 25°N-35°N) and the mean ratio

of (V/VG) computed for each latitude band. This was done by computing

the mean component of wind speed normal to the line connecting pairs of

observing stations and comparing this speed with the geostrophic speed

computed from the height gradient along the line connecting the stations.

Certain restrictions were imposed on the data, namely that the stations

be separated by distances between 2° and 5° latitude, that the wind

directions at the two stations be within 900 of each other, and

that the speeds of the normal components at the two stations be within

50 percent of each other. The computations were done for winds at 850,

500, and 200 mb. As there was comparatively little variation in the

ratio (V/VG) with pressure, the results for the three levels were combined

and are plotted in Fig. 3 for the three latitudinal bands, Assuming that

this coefficient of geostrophy vanishes at the equator and approaches

unity at high latitudes, a functional form

G E V/V G = 1 - exp(- .051If), (3.20)
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where ~ is the latitude in degrees, was fitted to the three plotted values.

This function appears in the observational scaling factors of (2,10e) and

has the effect of reducing the amount of correction made to one variable

field by cross-correlated observed residuals of another variable field.

The role of cross-correlated corrections to the analyzed fields is

worth discussing in more detail. First, it should be noted that, since

only corrections to the guess, or background, field are made using the

geostrophic thermal wind relation, any ageostrophic component of a guess

field will be found, to some extent, in the final analysis. Second, the

role of the geostrophy function, G, in reducing the magnitude of cross-

correlated corrections has just been noted. Finally and most importantly,

in practice the analysis is univariate, or nearly so, in those areas where

a fairly dense data coverage including both temperature and wind measure-

ments exists. The multivariate capability of the analysis scheme is

utilized primarily in those regions where data are sparse, or where data of

one type arenot complemented by data of the other types. An example is

satellite temperature data in oceanic areas where no wind data areavailable,

in which case the u and v wind component analyses will be adjusted by

geostrophic corrections corresponding to the implied thermal gradients of

the satellite data.

4. Determination of observational error correlations

It has been shown by Gandin et al.(1972), Bergman and Bonner (1976), and

Seaman (1977) that the correlation of the errors of neighboring observations

affects the net informational content of them. When observational errors

are positively correlated with each other, the informational content is'

0:
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reduced for the observed variable but enhanced for the gradient of that

variable. Thus, it is important that the error correlations, if non-

zero, be specified in order for these observations to receive proper

weight in the interpolation process.

For many pairings of observations, we may safely assume that the

observational errors are completely uncorrelated. Thus, rawinsonde

temperature measurements do not depend in any way on satellite temperature



18

the P -level height residuals may be used in the temperature and wind
1

component analyses provided their weights are scaled as indicated by

(2.10e). In practice, we have set P1 = 1013.2 mb.

Ship wind reports are included in the data base for the analyses after

being adjusted to approximate equivalent geastrophic values. The adjust-

ments are obtained from Druyan (1972) for the case of neutral static

stability and are

UG = 1.91 U - 5.97, (6.2)

with UG not-"permitted to be less than zero, and

AO = - 17.3(U/UG) + 26.5 + 0.04(L - 35), (6.3)

where U is the ship wind speed in knots, UG is the equivalent geostrophic

wind speed in knots, L is the latitude in degrees, and AO is the inflow

angle correction in degrees. These expressions for adjustment are based

on V. Cardone's 1969 model of the marine boundary layer which relates the

actual wind at 19.5 m to the sea-level geostrophic wind. This adjustment

seems to work reasonably well in practice, and it is also used in the

multivariate analysis of surface pressure and winds (McPherson et al.,

1979).

The vertical correlation function (3.19) which is also used for the

vertical correlation of MZi decreases fairly rapidly in magnitude with

increased vertical separation; thus, the ship pressures and winds affect

the analysis mostly in the lower layers and have virtually no impact on

the analysis above 700 mb.
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7. Some '>sign aspects of the NMC -lobal scheme

a. Data search and selection procedure

A preanalysis program sorts the observed data by latitudinal

strips, and then by longitude within each strip. The data are not

sorted by level.

The observation residuals are computed by linear interpolation

of the guess field from the longitude-latitude grid to the horizontal

positions of the observations, and by linear interpolation in the logarithm

of pressure from the prediction layers of the forecast model to the

pressure levels of the observations.

A search is made of the data about each grid point to be updated.

Successive boxes of approximately 15°, 20° , 25° and 30° latitude on a

side, centered on the grid point, are scanned until the following criterion

is met: A combination of complete radiosonde and satellite soundings is

required which adds up to 6, with each rawinsonde counting as 2 and each

satellite sounding counting as 1. When either this condition is satisfied

or the largest box has been scanned, the search stops, and the correlations

between the variable being analyzed at a grid point/level and each obser-

vation within the largest box scanned, i.e., the correlations appearing on

the right side of (2.12), are determined. Note that cross-correlations

between variables as well as auto-correlations are computed. To allow for

the variable quality of observations, each correlation is divided by

(1+c2), where e is the assumed normalized error standard deviation of the

observation. This procedure is done separately for each pressure level

at the grid point for which an analyzed value is desired, and it is done
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separately for each of the variables to be analyzed. The 10--observations

with the highest resulting values in each case are used to perform the

interpolative analysis. The choice of 10 is arbitrary; Belousov et al.

(1972, pp. 101-102) indicates that using five to eight observations may

be sufficient in most cases. If fewer than 10 observations are above

the assigned threshold correlation of 0.1, all are used; if there are

no observations with correlation above this threshold, the guess value

remains unaltered by the analysis routine.

The above procedure selects the observations used in the analysis

solely on the basis of their correlation with the variable to be analyzed

at the grid point and level, with allowance for observational error. The

inter-observational correlations are neglected, and thus there is no

guarantee that the 10 observations selected are necessarily the 10 obser-

vations which would receive the largest weight should all observations be

used in the analysis. An alternative procedure would be to do stepwise

regression on a larger set of observations than those actually used, but

this would be computationally expensive.

The effect of large inter-observational correlations between closely

positioned observations is to reduce the effective information content of

these observations, and hence the weight as determined by (2.12) that each

receives in determining the grid point correction. In an effort to correct

approximately for this, an alternative version of the analysis was run

with all cross-correlations augmented by an empirically determined 75 per

cent in the selection procedure only. This allows observations which are
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cross-correlated with the grid point, and usually at some distance from

either the grid point or other observations (hence only weakly correlated

with them), to be selected in preference to auto-correlated observations,

which are usually clustered close to the grid point and to each other in

areas of dense data coverage. This procedure generally resulted in

improved analysis, as measured by a reduced estimated analysis error, in

data-dense areas. In fact, various augmentations of the cross-correlations

were tried, and 75% produced the lowest estimated analysis error, given by

(2.13), overall. _

The data selection process is the most arbitrary aspect of the

entire analysis method, and it is in need of improvement provided such

improvement can be made without appreciably increasing machine timhe.

0h ~ b. Computation of observational weights

O nce the correlations and the normalized observational errors of

(2.12) have been specified for the set of observations used to obtain an

analyzed value at a specific grid point and level, these linear equations

may be solved for the observational weights a j. Since the left-side

matrix of coefficients may be ill-conditioned for certain distributions

of observations relative to the grid point, we have chosen not to perform

matrix inversion but rather to use an iterative scheme, the method of

conjugate gradients (e.g., Beckman, 1960), A similar iterative method,

steepest descent, is used successfully in the Canadian analysis scheme

(Rutherford, 1976). Convergence with the conjugate gradient method is

usually rapid. Ill-conditioned cases still occasionally lead to non-

AIM convergence, a situation that usually is corrected by averaging the pair
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of oQbservations which are most highly correlated with each other. However,

the number of cases where this occurs is a very small percentage of the

totals

The weights a'j thus obtained are converted to the weights ai 0

by means of the definition (2.10c). The analyzed ... _ 

value of the variable r at grid point/level g is then obtained with (2.5).

When the observed variable and the analyzed variable are the same, the

scaling factor of eqn. (2.10e) is equated to unity, equivalent to

assuming that the variance f2 of the variable is constant in the vicinity
j2.

of a particular grid point and level, although it may change when the

analysis shifts to another grid point or level.

The normalized estimate of analysis error, eqn. (2.13), is also com-

puted once the ak have been determined. Its value, which depends solelyik

on the physical locations of the observations and the assumed correlation

among them, lies between zero and one. The smaller the normalized

estimated error, the more strongly the analysis has weighted the obser-

vations relative to the guess value fgr in determining the analyzed value.
gr

Since none of the observations are ever assumed completely error-free, the

normalized error estimate can never be-zero even in the event of an

observation at precisely the analys'is grid point and level. If, on the

other hand, no observations are significantly correlated with the grid

point/level, the guess value remains unaltered and the normalized error

estimate is unity.
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c. Data quality control 

The observational data base for the analysis is subjected to

two error-checking routines in order to remove bad or unrepresentative

observations. The first of these is a gross error check, done after the

observation-minus-forecast residuals are computed but before the analysis

routine is entered. A residual is rejected if it is excessively large,

/
i.e., differs from the forecast by an improbably large amount. The gross

rejection limits are a function of latitude and are quite liberal, erring

in the direction of accepting bad observations at this point rather than

risking the rejection of good ones.

Subsequently, within the analysis routine, each observation is

compared with its neighbors of like kind. If an observation is too in-

consistent with its neighbors, it is labeled "bad" and rejected. This

k9,
comparative check is done in the following way: The correlations p..

13

between all possible pairs of observations used for the analysis at a

particular grid point are computed in the analysis routine in order to

solve the system of equations (2.12) for the observational weights.

These correlations are also used to do the comparative check. For each

pair of residuals of the same meteorological variable, the following

inequality is required to hold:

i i (a - bpja (7.1)kk~~~~~I: ^ (7.1)



24

where a and b are empirical constants (currently a = 6, and b = 3),

and a is the forecast error standard deviation for the level at which

the observations are located. Values of C currently used are given in

Table 1. If condition (7.1) is not met, the observations with the pre-

sumed lower quality is flagged; if both observations are of the same

presumed quality, both are flagged. Presumed quality is currently

0determined for rawinsonde soundings only, on the basis of vertical con-

sistency checks.* Depending on the outcome of this check, a quality

indicator is assigned:.to each rawinsonde observation. Other kinds of

I0observations are assigned a quality lower than that of the acceptable

rawinsonde observation, and rawinsonde observations can only be flagged

by other rawinsonde observations of equal or higher quality.

After all comparisons have been made, the total number of flags

assigned each observation is determined, and the observation with the

greatest number of flags is rejected first, provided that the number of

flags is at least two. (If there is more than one observation with the

greatest number of flags, they are both rejected.) Any flags which the

rejected observation causedto be placed against other observations are

removed, and the process is repeated until all remaining observations

*Quality indicators will be appended to satellite data produced by the

National Environmental Satellite Service (NESS) during the Global Weather

Experiment.
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have no more than one flag. This procedure requires that two or more

observations of equal or better quality must be in disagreement with an

observation in order for it to be rejected, and it insures that bad

observations are not allowed to reject good ones. It works well in

practice. An example of the method is given by Bergman (1978). The

comparative check is done separately at each grid point, so it is possible

for an observation to be accepted for the analysis at one grid point and

rejected at a neighboring grid point, but the actual instances of this

are few, occurring when the accepted observation is peripheral to the grid

point and receives a very small weight in the analysis.

8. An example of multivariate analysis

Figures 6, 7, 8, and 9 illustrate the maultivaxriate anlysis of

temperature for the 500-mb leyel at a grind point in the North Atlantic.

Figure 6' shows the guess, or background, temperature field used for this

an ays'ss. Tn this case it was a 24-hour forecast of 500-mb temperatures

valid at the analysis time of 0000 GMT 9 February 1975, The ilTlustrative

grid point is at 50°N latitude- and 40°W' longitude.

Figure 7 shows the I0 observed quantites selected by the routine

toQ update the TQ aInalys±is at 50°N/40°W. Note that one u-component and

two v-components of wind are used in the analysis, and that they are

selected from levels other than 500 mb. This is a result of the vertical

ut vt
part of the cross correlations, pi. and pij, having maxima or minima at1J i
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pressure levels other than 500 mb as shown in Fig. 2. The numbers in

parentheses are the relative weights (the aik' of (2.13)) which each

observation receives. (2.13) gives a value of 0.60 for the ratio

Egr/(fgr2) . The interpretation is that the estimated analysis error
gr g

is 60 percent of the assumed error in the forecast temperature for this

grid point and level.

After the weights are scaled according to (2.10e), the analyzed

temperature correction as given by the right-hand term of (2.5) is

found to be 4.5°C. This is shown in Fig. 8 along with the field of

algebraic temperature corrections for the surrounding North Atlantic

area, Finally, addition of these corrections to the background field

yields the updated analysis of Fig. 9. The temperature data observed

at 500 mb is plotted for comparison. However, it should be remembered

that the 500-mb temperature data do' not comprise all of the data

used in the analysis. Note that the isotherms fit the rawinsonde

temperatures more closely than the satellite temperatures, a result of

the higher levels of rms error and error correlation assigned to the

satellite data.

Another example of the data selected for analysis of a grid point/

level is shown in Fig. 10. Here, the 500-mb u-component of wind is

updated at 50°N/40°W by the indicated observed data. Weights are again

in parentheses. Note the use of two temperature observations multi-

variately in the wind analyses. In this case, (2.13) indicates that

the estimated analysis error is 82 percent of the assumed forecast error.
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In practice, the temperature analysis is univariate and the wind

component analyses either univariate or bivariate (in u,v) in

regions where data of each type exists with sufficient density. Such

is generally the case over the continents of the Northern Hemisphere.

In these regions, any balance which exists between the mass and

momentum fields is determined by the data themselves. The full multi-

variate capability of the analysis scheme is used only in those areas

where data are sparse or limited to one kind only. For example, ther6

may be abundant satellite temperature data but no wind data in some

oceanic areas. In the latter case, a geostrophic adjustment is made to

the momentum field to preserve a degree of balance with the newly ad-

justed mass field. Otherwise, studies indicate that the effects of 

adjusting the mass field alone are largely dispersed in gravity waves

(Kistler and McPherson, 1975).

The lack of geostrophic adjustment imposed by the analysis scheme in

regions of dense, complete data coverage is believed to be a desirable

feature. It is better for the balance which exists in these areas to be

specified by the data in conjunction with the background field rather

than by an overly restrictive geostrophic constraint. On the other hand,

the analysis profits in data-limited regions from geostrophic adjustment

in place of no mutual adjustment at all.

9. A discussion of experimental analysis results

A series of experimental analyses were performed using the scheme

described above. The results are summarized in Table 3. The data base
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for these analyses consisted of observations within, 3 hpurs of .o00 GMT.

3 December 1977, and the background field was provided by a 6-houn fore-

cast using the NMC global model (Stackpole et al., 1974) in its ni.e-

layer version. This forecast was selected from the. middle portiloa of a

global data assimilation cycling experiment (McPherson et al,, 1979)

with updating performed every 6 hours by optimum interpolation.,

For the present study only the 500-mb analysis of temperature and

wind components was performed on a longitude-latitude grid of 5o, How-

ever, the data search was three-dimensional;- some data at other pressures.

were used in the 500-mb analysis.. The analysis was restricted to the

Northern Hemisphere.

The numbers of Table 3 allow comparison in two ways. The first of

these is the normalized estimate of analysis error; that is, the square

root of the quantity given by (2.13). The second is the root-mean-

square "fit" of the analysis, after linear interpolation to the locations

of the observations, to the data. The latter number should emphatically

not be used as an exclusive measure of the "goodness"' of an analysis.

A reasonable degree of agreement between analysis and observations is to

be expected, of course, but it must be remembered that the observations

have been labeled "imperfect" and assigned error characteristics in

the analysis scheme. Thus, the analysis does not attempt to fit the

data exactly. Recall that the background field (the forecast) is

assumed to have some skill, hence it also has some weight in the final

analysis, the more so where the observations are scattered or are of
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questionable quality. This point cannot be emphasized too strongly,

since the natural tendency of the uninformed person is to judge the

quality of an analysis solely on the basis of its rms fit to the data.

The normalized estimate of analysis error, while useful, is by

no means a definitive measure of analysis quality either. Since it is

only an estimate based upon the distribution and type of observations,

it will be misleading when (1) the assumed statistical error characteristics

have been specified incorrectly or (2) the unknown actual errors of the

individual observations differ markedly from the assumed statistical

values. One can argue that, for a large ensemble of grid point analyses,

the latter problem will be minimized when computing average values, but

the former inaccuracy may still be present. The specification of

observational error characteristics admittedly is somewhat crude in the

present scheme, and improvement is desirable. However, some evidence

given below suggests that the analysis results are not unduly sensitive

to the exact specification of error characteristics. ;

Other ways to evaluate the relative quality of analyses are (1) making

numerical predictions from the initial conditions defined by the analyses

and comparing their performances, and (2) using diagnostic methods such

as those of Krishnamurti (1968) and Stuart (1974) to evaluate the analyses.

The first of these is open to the criticism that the errors of an analysis

are combined with the errors of the prediction model, and that the "best"

analysis selected by one prediction model may not be the best in terms
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w
of another model. This suggests that the analysis and prediction methods

should be designed as a cohesive pair at centers, such as NMC, where

forecasts are the primary end product,

With the above caveats in mind, we may proceed with a discussion

of Table 3. Run A is a null-analysis showing for comparison the rms

fit to the data of the forecast used as the background field. Runs B

and C show the comparison between the unaugmented and the augmented

cross-correlations in the selection procedire as described in Section 7a.

It was found experimentally that neither the estimated analysis errors

nor the rms differences varied significantly for augmentation up to

1.75, but that both increased markedly for augmentation of 2.0 or

greater. Examination of analyses produced by Runs B and C shows

little difference between the two in most areas.

Comparison of Run B or C with D shows that complete decoupling of

the temperature and wind analyses results in very small changes in the

statistics. The only significant difference is in the normalized

estimated analysis error for temperature, where some improvement is

indicated for the multivariate analyses over the univariate one. This

result is consistent with Schlatter's (1975) conclusion that the mass

analysis is improved by use of wind information, but that the momentum

analysis is not improved by the use of mass information. Rutherford

(1973) shows an improvement in 12-hr height forecasts made from multi-

variately analysed height and wind fields over those made from decoupled

fields even though the rms deviations of the analyses from the observed

data were virtually the same in both cases. We may surmise that,
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in the fully multivariate case, the mass field may be in more realistic

balance with the momentum field, leading to improved forecasts.

The difference in the normalized estimated temperature error between

Runs C and D is slight and comparison of the two temperature analyses

shows only small, subtle differences in some oceanic areas. Since the

maximum permissible cross-correlation between a temperature and wind

residual is only 0.28, then, even when cross-correlated observations are

selected, they are likely to receive small weights compared to auto-

correlated data or the background field.

Although individual cross-correlated observations may receive little

weight in the analysis of a grid point/level, the possibility exists

that if enough of them are selected, their combined weight may be

appreciable. In order to see whether the restriction to a maximum of

10 observations operates against sufficient combined weight assigned to

cross-correlated observations, Runs E and F were made with a maximum of

20 observations. Here, it can be seen that the difference in the

normalized estimated temperature error is greater than between Runs C

and D. This result suggests that the use of more observations results

in some improvement in the analysis, probably because the cross-correlated

observations receive greater combined weight. However, note that the

rms differences are larger for 20 observations than for 10 observations,

although the reverse is true for the normalized estimated errors.

O*f0'
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In Section 7a, it was mentioned that the choice of 10 observations

as the maximum was arbitrary. Runs G and H, with 6 and 8 maximum obser-

vations respectively, investigate the feasibility of using fewer

observations. Comparison of these runs with Run C (10 observations)

and Run E (20 observations) indicates that the normalized estimated

errors decrease as the maximum number of observations increases, a

result implied by (2.13), but the rms differences show a slight tendency

to increase. The optimum number of observations is not clearly indicated

by these results.

Run I used only wind data in the temperature analysis, and only

temperature data in the wind analysis. The normalized estimated errors

show that the improvement in the analysis is small (compare Run A) but

is somewhat greater for the temperature analysis than for the wind

analysis. This result indicates in another way that the ability of

cross-correlated data to improve the analysis is small at most grid

points.

Runs J and K investigate the sensitivity of the analyses to changes

in the rms errors assigned to the observations. In Run J, the values

of Table 1 ard divided by 2; in run K, these numbers are multiplied by

2. In Table 3, the normalized estimated analysis errors are placed in

parenthesis since they cannot be compared dcrectlyv with values from

other runs. (Recall that these estimates assume that the error levels

have been correctly specified. They merely givenan estimate of the

minimum analysis error achievable when the assigned observational error

levels are valid.) Comparison of the rms fits of the analyses to the

observations for Runs J and K indicate that changing the assigned rms

0w ~ observational errors by a factor of 4 does not change the rms fit by a
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large amount. Comparison of the analyzed residual fields themselves

(not shown) indicates close agreement of the patterns of correction, but

with the magnitude of the Run J residuals averaging about 50 percent

greater than those of Run K. This is the expected result; the smaller

assigned observational rms errors of Run J give the observations more

weight in making adjustments to the background fields. We conclude

that the analysis routine is moderately, but not extremely, sensitive

to the observational rms error values.

Finally, Runs L and M test the sensitivity of the analyses to changes

in the horizontal correlation of errors in the background field. In

Run L, the value of kh in (3.18) has been reduced by a factor of 4 to

.24 x 10-6 km-2. In Run M, kh has been multiplied by 4 to become

3.92 x 10- 6 km-2. The utt correlation of Run L thus has twice the half-

width of that of Run C, whereas for Run M the half-width is half of

Run C's. The other horizontal correlations are changed by like amounts.

The rms fits to the observations (Table 3) show a moderately strong

dependence on the variation of the horizontal correlations. Comparison

of the analyzed residual fields shows much broader, smoother correctional

patterns with Run L than with Run M. Thus, the correct specification of

the breadth of at least the horizontal correlations (and probably also

the vertical correlations) appears to be of some importance. Experiments

which vary the functional form of the correlations have not been performed

at NMC; however, an experiment by Schlatter et al. (1977) suggests that

statistical analysis schemes are not very sensitive to this factor,
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The sensitivity of the analyses to variation of the correlation

functions for errors of the background fields is important because we

have determined these correlations only in a data-rich areas (North

America) and have thus far assumed that these correlations apply every-

where on the earth. However, it is likely that the error correlations,

as well as the rms error levels, of the background (forecast) fields are

appreciably different in data-poor areas or in areas of lower quality

data. Statistical computation of these correlations in such areas is

made difficult by the characteristics of the data available, but it is

hoped that they will be done in the future. Most likely, the correlation

functions will prove to have greater breadth in these areas than in the

North American rawinsonde network, since it is reasonable to suppose

that larger forecast errors in the longer meteorological wave lengths

will occur in the data-poor areas.

10. Summary

A multivariate optimum interpolation statistical analysis scheme

for temperature and wind fields has been presented and illustrated by

an example analysis. A series of experimental analyses have been com-

pared, and the sensitivity of the analyses to variations in some of the

parameters of the scheme has been discussed. The scheme is designed

to periodically assimilate heterogeneous observed data into a continuing

global numerical prediction, as described in the comparison paper.

The design of the multivariate analysis system is similar to those

of Rutherford (1973, 1976) and Schlatter (1975), but differs in being

explicitly three-dimensions, in incorporating geostrophy implicitly
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with the thermal wind constraint, in having a more complete speci-

fication of observational error characteristics, and (in the experi-

mental version) in explicitly including oceanic surface observations

in the upper-air analysis.

The current procedure for selecting observations used in the

analysis of a grid point/level has arbitrary features, and Section 7

points out that this is one of the weakest aspects of the entire

analysis scheme. More logical ways of selecting observations are

available, but they are currently too expensive to be feasible for an

operatioionIal analysis system. --- Some future improvement in the

selection procedure may be possible without exceedin operational time

constraints.

The results of the experimental analyses indicate the following:

(1) The use of temperature-wind cross-correlations results in

slight improvement of the temperature analysis but no

significant change in the wind analysis.

(2) The use of temperature-wind cross-correlations has more

impact on the temperature analysis if the maximum number

of observations used is increased.

(3) Use of winds only in the temperature analysis, and vice-

versa, results in analyses which show little improvement

over the numerical prediction used for the background

fields.. .. .
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(4) The quality of the analysis is not very 

sensitive to changes in the maximum number of observa-

tions used, so long as that number is between 6 and 20.

(5) The analyses are only moderately sensitive to the levels

of rms observational error specified.

(6) The analyses are strongly sensitive to the half-

widths of the horizontal correlations of the errors in

the predictions used for the background field.

In light of the first result, one may question the need for fully

multivariate analyses. Although the total impact of winds on the

temperature analysis is small, undoubtedly there is desirable improve-

ment in the relationship between the mass and momentum fields at

... specific times and places. Since the mass field tends to adjust to

the wind field for intermediate wavelengths in numerical prediction

rather than the other way around (Williamson, 1973), and since use of

temperature data in the wind analysis results in no overall improve-

ment, it may be more efficient not to use temperature data in the

analysis of the wind field.

The need for better specification of observational error charac-

teristics has been mentioned, It appears, however, that slight errors

in the rms specifications will not have undue impact on the performance

of the analysis scheme.
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Finally, the need to specify the correlations of errors in the

background fields as a function of location and time is indicated.

The present assumption that these correlations are globally unvarying

undoubtedly compromises the performance of the analysis scheme to

some extent in those areas, primarily oceanic, where the observed data

are sparse or of poorer quality.
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Appendix A: Derivation of Correlation Functions for Multivariate

Temperature and Wind Analysis

Starting with equations (3.6) through (3.13) of the text, assume, as

in (3.14) and (3.15), that each of the three-dimensional covariances can

be expressed as the product of a function of horizontal position and a

function of pressure. Using this assumption in (3.6) through (3.13)

and separating each of the resulting equations into equations in

(xi, Yi' xj, yj) and (Pi, pj) leads to

ut GiR a tt)

= - - . (12A)
fij fi Y i j

tu GG R 2 tt

-uv CGI- 3V2 (ij t) (7A)

ij fjf Dyj

:ijj

G., 2 32
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3 3(5A)

ij fif i D giayj ij
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tt 32 uu _ 2 V
x., =.= ~ K (xT)

X qi3qj i aqiqj (Xi)

D2 UV 92 v13 -.I- (11A)
- qiq.j (Xij) - (xijU), (A)

13 Dqigqj

where

q n Pi qj n pji q 

and the other symbols are the same as in the text.

Since the Xij are functions of Pi and pj only, and since they are

required to approach zero as the pressure separation Pi - pj becomes

large:, then (9A), (10A), and (11A) are equivalent to

UV- = =x = X.. (12A)
xu~.= xiU X. Xuu

ut= Xvt ( ) (13A)

tu tv (uu) (14A
x.. -x

13 i3 oqiii i~~j ~q lij

tutv

=.U(XU.) (15A)= 3q.3q.X(xuu.) (15A)

Thus, by means of the thermal wind relation and the factoring

assumption, all of the quasi-horizontal functions can be expressed in

terms of tt and all of the vertical functions in terms of x?..

In order to express these functional relations in terms of correlations,

define

tt _ tt tt2
pijt ijt/t jit) (16A)

ut _ ut i tt)i 17
'P. . - IP ~~~~~~~~j ~(17A)

jij ij i/ j
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etc., for the quasi-horizontal functions, and

tt tt/(tt tt2tt = "''-' t)i (18A)
v ii X ii jj ,

= ut , ( uu .tt)l
vii = Xi/(Xii Xjj) ,(19A)

etc., for the vertical functions, In the above, an "ii" subscript

indicates the limit value of a function when j-i, and a "jj" subscript

indicates the value when inj. Clearly, the total correlations are given

by

t.t. tt t t
-E tt =i tj i~j (20A)

uit. ut ut ut
- put = - .. voij , (21A)

ij 31 1j
1 J

etc.

The analysis scheme currently assumes that

tti = C exp[- kh(ASi.) ,(22A)

where C is a constant with the dimensions deg2, and that

uu = 1
Xij 1+kpZn 2 (Pi /Pj)

1

lp(qj - q.)2 (23A)l+kp (qi - qj) 

If (22A) is substituted in (1A) through (7A) and the resulting expressions

normalized as indicated by (16A) and (17A), the results are

tt
1ij. =13

ut

13

exp[- kh(ASij)2]

(2kh) Y2 tt

- (Yi - yB ) Vij

(24A)

(25A)
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'-2tiuY tt

vt = (2kh) tt (27A)II. .= (2h) ( -xj)ptt (2 7A)

tv-,= (
2
kh) ½ tt

m
~uu= 1 - 2k(x -j y) 1 t (29A)

ij i ij J j
mtw= [1( 2 kh) -y xj)2lItt (29A)
m

ij : i J ij (30A)

_ ~2 kh( (yItluv -Pyj = -:(xi - YJ tVt (31A)

Similarly, substitution of (23A) in (12A) through (15A) and normalizing

as in (18A) and (19A) gives

v w = Vuv = VIu = vuu 1 (32A)
Ij Ij ijiJ + kp-kn2 (Pi/Pj)

vu .= v.. = (2kp)- n(P./P.)(V)2 (33A)':j i= ij ij

tu tv 1-2 (34A)
vil = siv =- (2kp) in(P1/P.)(vuth)2 (34A)

vij7 vuv ~,v uu ij

vtt 2( Uuu
v..= [l - 4kp n2 (P/P )v ](..5,u2 ;(35A)Exrsions J tJ i3

Expressions (24A) through (35A) give the correlations currently used

in the analysis scheme and depicted in Figs. 1 and 2.
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When functional forms for tij and Xi are assumed as in (22A) and

(23A), functional representations of the mean square quantities ti, ui,

and vi are also implicitly assumed. Using (5A), (6A), (15A), and the
1

uu and
equality of Xuiu and Xi in (12A),

t t = Xtt tt =t - 92 (uul (36A)
i ii ii ii ~qiq ij j=i '

22
--. uu uu R Gi 1 tt) uu (37A)

1u = ii Xii =f Dy ijj=i Xii (37A)
1

-~ ~ V ij=i Xii (38A)

2 2R G i 2- t

1~~~ y~yi _i_1~

tt uu
For the choices (22A) and (23A) for ijt and Xuiu these expressions

yield

:= 2C k (39A)
. p

and

u = v = 2C kh R2Gi/f , (40A)

that is, t5 is assumed constant, and u2 and vi are assumed equal and a

function of latitude only. 1
function of latitude only.



Appendix B: Derivation of Correlation Functions for Use of Geopotential

Height Data in Upper-Air Analysis

Part 1: Height-temperature relationships.

Equations (3.1) and (3.2) of the text assume that corrections made

to the temperature and those made to the wind components are related by

the thermal wind relation. If, additionally, the geopotential height and

the wind components are geostrophically related, i.e.,

Gg am
u -_ Gg ay , (lB)

f ay'

v Gg= (2B)
f 3x

where g is the acceleration due to gravity, and other symbols are the

same as in the text, then, substituting (1B) and (2B) in (3.1) and (3.2),

at = _ ga 2 (3B)

ax R aqax (

at = _ ga 2 (4B)
ay R3qay '

where q - Zn(p). If (3B) and (4B) are true, then the covariances between

two points, i and j, of the variables e and t are related as follows:

(a t ) = - - g a2 ( j) (7B)

R aqiyxi

1~~~~~~
a RaqSt~ 32a )y(

< Ma2~~~ 2v~ j = -a 2 a2y (6B)

ax aR(Hi) = R qaj axqax 

R y i ~~~R Dqi~yi

_g 32 (B

ayj R - qj Dyj F
D2 ~ ~2 ~2 32

Dx i axj I qiaqj Fzej
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= g2 a2qi
=P? aqiaq.

a3 2

ayay. (?j)

Assume that

ei.. = i (xiyi;xj ,Yj) X(Pi,'Pj) ij 1j;x i

1= 1ij I Jij

etc. Substituting these expressions in (5B) through (10B) yields

a it-) = , g D ) 3x i *, R ~x-i *i

a (ijt
axi j

32 ft1i 2 a 2 : I
ax 3xj. 3 f DX ax a ij ,

plus three similar equations in terms of derivatives with respect to

Yi and yj. Also

te
X.. =ij a (X i ) 

aqi ij
(16B)

et a L ea

ij a=qj ]

Xtt = 2 a 91m%)

From (13B) through (15B) and the similar

--- - + constant,
i R i. j

(17B)

(18B)

equations in Yi, y;,

etc., and, since the functions are required to appraach zero for large

separations of points i and j,

tt = _ g to =

iJ R ij
g st g2 ij

R -iij R 2 ij

a 2T-~(titj)
3YiYj

(10OB)

(liB)

(12B)

(13B)

(14B)

(15B)

(19B)

R a ee
= _x -_j) I
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As in Appendix A, define

(20B)
1J :ij ii J

11pij = ij/iiPjj ' (21B)

etc., as quasi-horizontal correlations, and

vij - X~./x(xttx~ ) 2 
(22B)

=X XiiX j ) i (2B)
to= tt - ½· = X../ (23B)13 t i ii jjj'

etc., as vertical correlations. Then

P .= p....,I (24B)
iz izj z

to tJ tJ
.ij = .. , ij (25B)

etc. To express these correlations in terms of correlations derived

in Appendix A, note that, for any choice of W, (19B) gives

ii R i (26B)

tt
and similarly for i... Hence, normalization of (19B) using (20B),

JJ

(21B), etc., and (26B) gives

Pej = - eit P _Ate = ptt (27B)
1ij 1j j ij

For the vertical correlations, compare (18B) with (15A) of

Appendix A. Obviously,

X.i = X.. , (28B)

except for a constant term which we require to be zero. It follows that

vme = vu u (29B)

te tu
9 = t E:(30B)

Vet = vut (3B)
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Part 2: Height-wind relationships.

The geostrophic relation between height corrections and wind

component corrections given by (lB) and (2B) leads to the following

covariance relations:

Gig a ) 
u - Gfigz(..r) (32B)

f Yi [ j

eZiuj = ] a(i;s(33B)

fj Yj

Gig a

Gjg a -

vi J fi . 1 3' (34B)

'v = G7 7f) (35B)

G.G~g 

_ G f3 ~7% (36B)uiuj= fijYij

plus three more such relations analogous to (3.11) through (3.13) of the

text. Separating (32B) through (36B) into equations in (xiyj;yi,Yj)

and (Pip) leads to

ij -fi Dy ijou G So (37B)

ij y. ij

v iG.g (38B)
ij f Ay DX ]

Ev = Gig D Be (40B)uu- =~ Gi 2g ~(¢) (4139B)
*ij f f 1J- 1 g (~ (40B)

f ~xj [1j )

uu=- G£G~g? 92 trM
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and

X =XU2 x' =a 'V = xv = xuu (42B)
ij . ij ij ij ij

s~ ~tt
Using (19B) to replace ij with *ij in (37B) through (40B) results

in

US G R2 a tt

ij gfi aYi

sn vs Mand similar relations for ~ij' fij, and iij' Comparison of (43B) with

(1A) of Appendix A shows that

-uO -R Wut(44B)
$ij = -ij'

Mu ve f gpcre
and similarly for ~ij' pij' and tij' Defining u-correlations as

previously, normalizing (44B), etc., and using (26B) then gives

ut
N.. = - N.. (45B)

Siu =_ptu (46B)
Wij = ij

.. ~ = -_ ~ pvtW..~ ~(47B
iJ lJ

Pijv = Pi1v (48B)

From (42B) it immediately follows that

L uv = .v= zv =uu (49B)- ~ S VS ) UU

Thus, all of the new correlations involving a geopotential height

correction are shown by (27B), (29B) through (31B), and (45B) through

(49B) to be expressible in terms of correlations already derived in

Appendix A for the (t,u,v) upper-air analysis.
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TABLE 1. Mean Forecast Error Standard Deviation As A Function Of Pressure

Up

Pressure T :?c)COesure C)2 U (mVs-) v (ms -1)

(mb)

1000 4.3 4.9 4.6

850 3.2 4.2 4.1

700 2.2 4.3 4.0

500 2.0 4.9 4.7

400 2.1 5.7 5.6

300 2.6 7.1 6.7

250 3.4 7.5 7.2

200 3.6 7.3 7.0

150 3.1 6.7 6.4

100 3.0 5.6 5.4

70 2.9 6.0 6.3

50 4.6 9.0 9.8



TABLE 2. Normalized Observational Errors, Si

Variable RAOB ACRFT VTPR SATWIND

:T O.5 0.5 e1,0 

UWV. 0.4 0.4 0,5



TABLE 3. Comparison of experimental 500-mb analyses for 0000 GMT 13 December 1977.

In screening, S differences
RMS differencescross-correlations

Run Description of o. multiplied by Normalized Estimated Errors T(°C) ovI. sec' d )
of obso T('C) IVI ~sec.1,T UV

A 6 hr. prediction
(background fields) 0 - 1.0 1.0 1.85 13.97

B. Multivar. (T,U,V) 10 1.0 .o621 . 623 1.25 8.65

C Multivar. (T,U,V) 10 1.75 .616 .625 1.26 8.65

D Univar. T, Bivar. (U,V) 10 1,75 .634 .626 1.25 8.65

E Multivar. (T,UV) 20 1.75 .587 .594 1.30 9.13

F Univar. T, Bivar. (U,V) 20 1.75 .622 .602 1.27 9.14

G Multivar. (T,U,V) 6 1.75 .654 .647 1.22 8.64

H Multivar. (T,U,V) 8 1.75 .634 .635 1.24 8.71

I (U,V) obs. for T Anal.
T obs. for (U,V) Anal. 10 1.75 .897 .932 1.76 14.04

J Multivar. (T,U,V) 10 1.75 (.561) (.582) 1.15 7.98
ob. errors halved

K Multivar. (T,U,V) 10 1.75 (.736) (.713) 1.38 9.73
ob. errors doubled

L Multivar. (T,U,V) 10 1.75 (.526) (.469) 1.42 10.88
.25k

M Multivar. (T,U,V) 10 1.75 (.759) (.788) 1.13 8.70

4 kh
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1. Isopleths of lateral correlation functions computed from (24A)

through (31A) with kh = .98 x 10- 6 km- 2. Correlations are of

variable point i with point j located at center of each diagram.

Tic marks along margins are at 300 km intervals.

2. Curves of vertical correlation functions computed from (32A)

through (35A) with k = 5.
p

3. Coefficient of geostrophy V/Vg, determined for 10, 20, and 30°N

latitude, and function G used in analysis. (See Eq. 3.25.)

4. Vertical error correlation functions for rawinsonde temperatures

and component winds, and for satellite temperature retrievals.

5. Lateral error correlation of satellite NIMBUS retrievals as a

function of separation distance S. Numbers in parentheses are

numbers of observational pairs used to compute correlation.

(Courtesy P. Polger and J. Horodeck, Development Division, NMC.)

6.6 Predicted 500-mb temperatures for 0000 GMT 9 February 1975.

Used as background field for optimum interpolation analysis.

7. The 10 observations used by optimum interpolation routine in

adjusting 500-mb temperature at 50°N/40°W. Observational weights

in parentheses. Circles are rawinsondes, diamonds are aircraft

reconnaissance with dropsonde, and stars are satellite VTPR

temperatures.

8. Corrections to predicted 500-mb temperature produced by optimum

interpolation routine. Correction at 50°N/40°W is 4.50C.



9. Analysis of 500-mb temperatures, 0000 GMT 9 February 1975.

Observed 500-mb temperatures shown for comparison.

10. The 10 observations used by optimum interpolation routine in

adjusting 500-mb U component of wind at 50°N/40°W. Symbols same

as Fig. 7.
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